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NOTES 
Edited by Jimmie D. Lawson and William Adkins 

A Theorem of Burnside on Matrix Rings 

T. Y. Lam 

1. BURNSIDE'S THEOREM. In 1905, Burnside [2] proved the following remark- 
able result on groups of invertible matrices over the complex field C: 

Theorem 1. Let G be a group of invertible n x n matrices over C. Then G has no 
nontrivial invariant subspaces in C' if and only if G contains n2 linearly independent 
matrices, that is, if and only if the C-span of G in MJ(C) is M,.(C) itself. 

The "if" part is easy, since MJ(C) has no nontrivial invariant subspaces in C' 
(the "trivial" ones being {0} and Cn). Thus, the gist of Burnside's Theorem is in its 
"only if' part. 

For an explicit example, take G to be the dihedral group G generated by the 

rotation r = ( - ) and the reflection s = (1 ) . It can be seen that G has no 

invariant subspaces in C2, and in fact, r, s, rs = (? l), together with the identity 
matrix clearly form a basis of M2(C). 

Burnside's Theorem (and its subsequent generalization by Frobenius and Schur 
in [5]) proved to be a fundamental result in the representation theory of groups, 
and has appeared in many books on that subject. From a ring-theoretic perspec- 
tive, [2] and [5] yield a more general result, nowadays also called Burnside's 
Theorem, which can be formulated as follows. 

Theorem 2. Let A be a subring of MJ(C) containing all scalar matrices. If A has no 
nontrivial invariant subspaces in Cn, then A = M,2(C). 

Note that Theorem 1 follows from Theorem 2 by applying the latter to the 
C-span of the group G. In fact, we see that, in Theorem 1, G could have been 
replaced by any multiplicative monoid of matrices! 

In the standard textbooks I consulted, Theorem !2 is deduced either from 
Jacobson's Density Theorem ([7, p. 648], [9, p. 213]), or from its finite-dimensional 
analogue, Wedderburn's Theorem ([4, p. 182], [8, p. 109]). These are powerful 
ring-theoretic results. On the other hand, Theorem 2 is quite elementary in nature; 
in fact, its statement is completely accessible to an undergraduate class in linear 
algebra. It seems desirable, therefore, to find a proof of the Theorem using 
nothing but basic linear algebra techniques. 

In the following, we offer such a proof. For the rest of this section, let V = C? 
and R = M(C), and let A c R be a subring satisfying the hypotheses of 
Theorem 2. 

Lemma 3. Any g E R commuting with all f E A is a scalar matrix. 
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Proof: Let A e C be an eigenvalue of g, and let E c V be the associated 
eigenspace {v E V: gv = Av}. For any f E A, fg = gf implies that f(E) c E. Since 
E 0 0, we have E = V, and so g = AI. U 

Lemma 4. Let v E V and let W be a subspace of V such that, for any f E A, 
f(W) = 0 X f(v) = 0. Then v E W. 

Proof: We proceed by induction on dim W. The case dim W = 0 is clear, in view of 
the fact that In e A. In case dim W > 0, write W as a sum of a proper subspace WO 
and a line Cw where w 4 W0, and consider the C-subspace 

H = {h EA h(Wo) = 01 cA. 

By the inductive hypothesis, H(w) 0 0. Since AH c H, we have A(H(w)) c H(w), 
and so H(w) = V. Now define a linear map g: V -* V by g(h(w)) = h(v) (for any 
h E H). To check that g is well-defined, suppose h(w) = 0 for some h E H. Then 
h(W) = 0, and so h(v) = 0 by assumption. Now g commutes with any f E A, since 

(gf)(h(w)) = g((flh)(w)) = (flh)(v) = f(g(h(w))) = (fg)(h(w)) 

for any h E H. Therefore, by Lemma 3, g = aI for some a E C. Thus, h(v) = 
g(h(w)) = ah(w), and so h(v - aw) = 0 for any h E H. By the inductive hypothe- 
sis again, we have v - aw E WO, and hence v E W as desired. v 

Proof of Theorem 2. It suffices to show that A contains all the matrix units Eij. For 
ease of notation, assume that j = 1. Let el, . . ., en E V be the standard basis. Let 
H = {h EA: h(e2) = . = h(en) = 01. By Lemma 4, H(e1) 0 0, and as before, 
H(e1) is invariant under A. Therefore, H(e1) = V; in particular, there exists 
h E H such that h(e1) = ei. We have then h = Ei1 E A, as desired. i 

2. DISCUSSION. (1) In Theorem 1 and Theorem 2, C could have been replaced 
by any field k that is algebraically closed. 

(2) If the field k is not algebraically closed, Theorem 2 is false in general. For 

instance, if k = R, take the matrix r = (? 1) in Section 1. Since r2 = _I 

A = kI + kr is a subring of M2(k). Clearly, A has no nontrivial invariant sub- 
spaces in k2, and yet A 0 M2(k). 

(3) If k is not algebraically closed, not all is lost. To get Theorem 2 for k, we 
simply add the assumption that Lemma 3 holds true for A. (This is not an 
unreasonable assumption, since Lemma 3 is clearly a necessary condition for A to 
be equal to R.) The proof we gave works verbatim in this case. 

(4) In Theorem 2, do we need A to be a subring of R? A quick look at the proof 
seems to suggest that A need only be a C-subspace of R containing the identity 
matrix. However, a closer examination shows that we need A to be a ring in exactly 
one step (used several times), namely, to guarantee the inclusion AH C H. (In 
ring-theoretic language, H is a left ideal of A.) If A is only a C-subspace 
(containing I), Theorem 2 need not hold. For instance, take A to be the C-span of 
I2 and the matrix units E12 and E21. Then A 0 R, but, since E1l = E12E21 and 
E22 = E21E12, A has no nontrivial invariant subspaces in C2. So, if A c R is a 
C-subspace of matrices (containing I), the best conclusion is only that A generates 
R as a ring. 

Some beautiful applications of Theorem 1 to the theory of matrix groups are 
worth mentioning. In [3] (which appeared back-to-back with [2]), Burnside contin- 
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ued his study of groups of invertible n x n matrices G over C and used Theorem 1 
to show that, if G has a finite exponent N (gN = 1 for every g E G) or G has a 
finite number of conjugacy classes, then G is a finite group. With the knowledge of 
Theorem 1, proofs of these results (suitably generalized to arbitrary fields) are now 
completely accessible to undergraduates; for an exposition, see [8, pp. 151-152]. 
Apparently, Burnside's results in [3] were the origin of the famous Burnside 
Problems in group theory. 

3. PERSPECTIVE. It seems safe to say that a proof such as the one we gave for 
Theorem 2 does not come from nowhere. Indeed, our proof is closely modeled 
upon Tate's proof of Wedderburn's Theorem given in Artin's paper [1]. Since Tate 
was proving a more general result, the arguments (and the concomitant notations) 
given in [1] were considerably more involved. Our proof may be viewed as a 
stripped down version of Tate's proof, written out completely in the elementary 
language of linear algebra. In particular, our proof made no use of the notions of 
bimodules, chain conditions, division algebras, etc., and the crucial use of Schur's 
Lemma (the endomorphism ring of a simple module is a division ring) is snugly 
hidden behind the eigenspace argument in the proof of Lemma 3. 

Tate's proof given in [1] does not seem to be as well-known as it should be in 
linear algebra circles. I wonder if this could be due to the fact that Artin's paper 
was somehow never reviewed in Mathematical Reviews. Perhaps this note will help 
revive the basic ideas in Tate's proof, and make Theorem 2 into an accessible 
result in undergraduate linear algebra. A much more sophisticated version of 
Tate's result formulated as a double-commutant theorem for quasi-injective 
modules appeared in [6]. 

Note added October 27, 1997. Quite recently, two more proofs of Burnside's Theorem have come to my 
attention. The first one, by I. Halperin and P. Rosenthal (this MONTHLY 87 (1980) 810) also uses the 
fact that any linear transformation is a sum of rank 1 transformations. The second one, by E. Rosenthal 
(Lin. Algebra Appl. 63 (1984), 175-177), uses the idea of graph transformations. Some infinite 
dimensional versions of Burnside's Theorem are available from Chapter 8 of the book Invariant 
Subspaces by H. Radjavi and P. Rosenthal, Springer Verlag, 1973. 
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